RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 6, Pages 103–120 (Mi im9395)

On identities of model algebras

S. V. Pchelintsevab

a Saint Petersburg State University
b Financial University under the Government of the Russian Federation, Moscow

Abstract: A sharp upper bound for the nilpotency index of the commutator ideal of a $2$-generated subalgebra of an arbitrary model algebra is given; this estimate is about half that for arbitrary Lie nilpotent algebras of the same class. All identities in two variables that hold in the model algebra of multiplicity $3$ are found. For any $m\geqslant 3$, in a free Lie nilpotent algebra $F^{(2m+1)}$ of class $2m$, the kernel polynomial of smallest possible degree is indicated. It is proved that the degree of any identity of a model algebra is greater than its multiplicity.

Keywords: Lie nilpotent algebra, model algebra, identity in two variables, algebra kernel.

UDC: 512.552.4+512.572

MSC: 16R10, 16R40

Received: 25.06.2022
Revised: 28.08.2022

DOI: 10.4213/im9395


 English version:
Izvestiya: Mathematics, 2023, 87:6, 1210–1226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025