RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 3, Pages 3–11 (Mi im9515)

Geometric constructions in the theory of analytic complexity

V. K. Beloshapkaab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: Two geometric constructions are considered in the context of analytic complexity. Using the first construction, on the set of analytic functions, we build a metric invariant under the action of the gauge group. With the help of the second construction, we obtain a necessary differential algebraic condition for membership of a function in the tangent space to the class of bivariate functions of analytic complexity $\le 2$ at the point $z_0=x^3 y^2 +xy$. From this result we show that the polynomial $z=x^3y^2+xy + \pi x^2 y^3$ of degree 5 has analytic complexity 3.

Keywords: analytic function, analytic complexity, metric space.

UDC: 517.55

MSC: 32A10

Received: 03.06.2023
Revised: 25.09.2023

DOI: 10.4213/im9515


 English version:
Izvestiya: Mathematics, 2024, 88:3, 411–418

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024