RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 5, Pages 127–173 (Mi im9532)

Local analog of the Deligne–Riemann–Roch isomorphism for line bundles in relative dimension 1

D. V. Osipov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We prove a local analog of the Deligne–Riemann–Roch isomorphism in the case of line bundles and relative dimension $1$. This local analog consists in computation of the class of $12$th power of the determinant central extension of a group ind-scheme $\mathcal G$ by the multiplicative group scheme over $\mathbb Q$ via the product of $2$-cocyles in the second cohomology group. These $2$-cocycles are the compositions of the Contou-Carrère symbol with the $\cup$-product of $1$-cocycles. The group ind-scheme $\mathcal{G}$ represents the functor which assigns to every commutative ring $A$ the group that is the semidirect product of the group $A((t))^*$ of invertible elements of $A((t))$ and the group of continuous $A$-automorphisms of $A$-algebra $A((t))$. The determinant central extension naturally acts on the determinant line bundle on the moduli stack of geometric data (proper quintets). A proper quintet is a collection of a proper family of curves over $\operatorname{Spec} A$, a line bundle on this family, a section of this family, a relative formal parameter at the section, a formal trivialization of the bundle at the section that satisfy further conditions.

Keywords: Deligne–Riemann–Roch isomorphism, determinant central extension, $\cup$-products of $1$-cocycles, Contou-Carrère symbol, determinant linear bundle.

UDC: 512.732.6+512.747+512.721

MSC: 14B10, 14D15, 14C40L

Received: 15.08.2023
Revised: 28.03.2024

Language: English

DOI: 10.4213/im9532


 English version:
Izvestiya: Mathematics, 2024, 88:5, 930–976

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024