RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 4, Pages 31–43 (Mi im9542)

Linear isometric invariants of bounded domains

Fusheng Denga, Jiafu Ningb, Zhiwei Wangc, Xiangyu Zhoudea

a School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
b School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan, P. R. China
c Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing, P. R. China
d Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, P. R. China
e Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, P. R. China

Abstract: We introduce two new conditions for bounded domains, namely $A^p$-completeness and boundary blow down type, and show that, for two bounded domains $D_1$ and $D_2$ that are $A^p$-complete and not of boundary blow down type, if there exists a linear isometry from $A^p(D_1)$ to $A^{p}(D_2)$ for some real number $p>0$ with $p\neq $ even integers, then $D_1$ and $D_2$ must be holomorphically equivalent, where, for a domain $D$, $A^p(D)$ denotes the space of $L^p$ holomorphic functions on $D$.

Keywords: linear isometry, $A^p$-complete, biholomorphic equivalent.

UDC: 515.124

MSC: 32A25, 32A35, 32T05, 32U10

Received: 10.04.2023

Language: English

DOI: 10.4213/im9542


 English version:
Izvestiya: Mathematics, 2024, 88:4, 626–638

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024