RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 6, Pages 82–117 (Mi im9548)

Cone criterion on an infinite-dimensional torus

S. D. Glyzin, A. Yu. Kolesov

Centre of Integrable Systems, P. G. Demidov Yaroslavl State University

Abstract: On the infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space, $\mathbb{Z}^{\infty}$is an abstract integer lattice, a special class of diffeomorphisms $\mathrm{Diff}(\mathbb{T}^{\infty})$ is considered. This class consists of the mappings $G\colon \mathbb{T}^{\infty} \to \mathbb{T}^{\infty}$ such that the differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms from $\mathrm{Diff}(\mathbb{T}^{\infty})$, we establish the validity of the so-called cone criterion, which is a classical result of finite-dimensional hyperbolic theory (that is, the hyperbolicity criterion formulated in terms of fields of invariant horizontal and vertical cones).

Keywords: infinite-dimensional torus, diffeomorphism, hyperbolicity, cone criterion.

UDC: 517.926+517.938

MSC: 37D20, 37F15, 37L45

Received: 12.10.2023
Revised: 18.03.2024

DOI: 10.4213/im9548


 English version:
Izvestiya: Mathematics, 2024, 88:6, 1087–1118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025