RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 5, Pages 174–186 (Mi im9566)

Pfister forms and a conjecture due to Colliot–Thélène in the mixed characteristic case

I. A. Panina, D. N. Tyurinab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI), St. Petersburg

Abstract: Let $R$ be a regular local ring of mixed characteristic $(0,p)$, where $p\neq 2$ is a prime number. Suppose that the quotient ring $R/pR$ is also regular. We fix a non-degenerate Pfister form $Q(T_{1},\ldots,T_{2^{m}})$ over $R$ and an invertible element $c$ in $R$. Then the equation $Q(T_{1},\ldots,T_{2^{m}})=c$ has a solution over $R$ if and only if it has a solution over the fraction field $K$.

Keywords: quadratic form, Pfister form, Colliot–Thélène conjecture, mixed characteristic.

UDC: 512.74+512.723

MSC: 14G45

Received: 13.12.2023
Revised: 26.02.2024

DOI: 10.4213/im9566


 English version:
Izvestiya: Mathematics, 2024, 88:5, 977–987

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024