RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 1, Pages 30–53 (Mi im9587)

On the period of the continued fraction expansion for $\sqrt{d}$

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: If $d$ is not a perfect square, we define $T(d)$ as the length of the minimal period of the simple continued fraction expansion for $\sqrt{d}$. Otherwise, we put $T(d)=0$. In the recent paper (2024), F. Battistoni, L. Grenié and G. Molteni established (in particular) an upper bound for the second moment of $T(d)$ over the segment $x<d\leqslant 2x$. As a corollary, they derived a new upper estimate for the number of $d$ such that $T(d)>\alpha\sqrt{x}$. In this paper, we slightly improve this result of three authors.

Keywords: continued fraction, period of simple continued fraction expansion, trilinear Kloosterman sums.

UDC: 511.32+511.35+511.41

MSC: 11A55, 11L05, 11Y65

Received: 15.03.2024
Revised: 19.06.2024

DOI: 10.4213/im9587


 English version:
Izvestiya: Mathematics, 2025, 89:1, 26–49

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025