RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 5, Pages 3–31 (Mi im9603)

$H^p$ spaces of separately $(\alpha, \beta)$-harmonic functions in the unit polydisc

M. Arsenovića, J. Gajićb, M. Mateljevića

a Department of Mathematics, University of Belgrade, Belgrade, Serbia
b Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

Abstract: We prove existence and uniqueness of a solution of the Dirichlet problem for separately $(\alpha, \beta)$-harmonic functions on $\mathbb D^n$ with boundary data in $C(\mathbb T^n)$ using $(\alpha, \beta)$-Poisson kernel $P_{\alpha, \beta} (z, \zeta)$. A characterization by hypergeometric functions of separately $(\alpha, \beta)$-harmonic functions which are also $m$-homogeneous is given, it is used to obtain series expansion of separately $(\alpha, \beta)$-harmonic functions. Basic $H^p$ theory of such functions is developed: integral representations by measures and $L^p$ functions on $\mathbb T^n$, norm and weak$^\ast$ convergence at the distinguished boundary $\mathbb T^n$. Weak $(1,1)$-type estimate for a restricted non-tangential maximal function $M_{A, B}^{\mathrm{NT}}$ is derived. We show that slice functions $u(z_1, \dots, z_k, \zeta_{k+1}, \dots, \zeta_n)$, where some of the variables are fixed, belong in the appropriate space of separately $(\alpha', \beta')$-harmonic functions of $k$ variables. We prove a Fatou type theorem on a. e. existence of restricted non-tangential limits for these functions and a corresponding result for unrestricted limit at a point in $\mathbb T^n$. Our results extend earlier results for $(\alpha, \beta)$-harmonic functions in the disc and for $n$-harmonic functions in $\mathbb D^n$.

Keywords: separately $(\alpha, \beta)$-harmonic functions, $H^p$ spaces, non-tangential limits, polydisc.

UDC: 517.53

MSC: 32A35, 42B30, 42B25, 32A05, 35J48

Received: 12.05.2024
Revised: 18.03.2025

Language: English

DOI: 10.4213/im9603


 English version:
Izvestiya: Mathematics, 2025, 89:5, 871–899


© Steklov Math. Inst. of RAS, 2025