RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 2, Pages 114–127 (Mi im9608)

Convergence of regularized greedy approximations

I. P. Svetlov

Lomonosov Moscow State University

Abstract: We consider a new version of a greedy algorithm in biorthogonal systems in separable Banach spaces. We consider approximations of an element $f$ via $m$-term greedy sum, which is constructed from the expansion by choosing the first $m$ greatest in absolute value coefficients. It is known that the greedy algorithm does not always converge to the original element. We prove a theorem showing that the new version of a greedy algorithm (called the regularized greedy algorithm) always converges to the original element in Efimov–Stechkin spaces. We also construct examples that show the significance of the conditions of the main theorem.

Keywords: approximation of functions, greedy algorithm.

UDC: 519.651

MSC: 41A05, 41A65

Received: 21.05.2024
Revised: 24.07.2024

DOI: 10.4213/im9608


 English version:
Izvestiya: Mathematics, 2025, 89:2, 328–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025