RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1991 Volume 55, Issue 6, Pages 1257–1286 (Mi im972)

This article is cited in 5 papers

Generalized functions on a Non-Archimedean superspace

A. Yu. Khrennikov

Moscow State Institute of Electronic Technology (Technical University)

Abstract: A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrödinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.

UDC: 517.075.8

MSC: Primary 46S10, 46F99, 26E30; Secondary 58C50, 81T30, 30G06, 47S10

Received: 24.04.1991


 English version:
Mathematics of the USSR-Izvestiya, 1992, 39:3, 1209–1238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024