RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1991 Volume 55, Issue 4, Pages 716–746 (Mi im986)

This article is cited in 21 papers

Characteristic classes of vector bundles on a real algebraic variety

V. A. Krasnov


Abstract: For a vector bundle $E$ on a real algebraic variety $X$, the author studies the connections between the characteristic classes
$$ c_k(E(\mathbf C))\in H^{2k}(X(\mathbf C),\mathbf Z),\quad w_k(E(\mathbf R))\in H^k(X(\mathbf R),\mathbf F_2). $$
It is proved that for $M$-varieties the equality $w_k(E(\mathbf R))=0$ implies the congruence $c_k(E(\mathbf C))\equiv 0 \operatorname{mod}2$. Sufficient conditions are found also for the converse to hold; this requires the construction of new characteristic classes $cw_k(E(\mathbf C))\in H^{2k}(X(\mathbf C);G,\mathbf z(k))$. The results are applied to study the topology of $X(\mathbf R)$.

UDC: 513.6+517.6

MSC: Primary 14P25; Secondary 14F05, 14J60, 55R40

Received: 19.03.1990


 English version:
Mathematics of the USSR-Izvestiya, 1992, 39:1, 703–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025