RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1991 Volume 55, Issue 4, Pages 877–889 (Mi im992)

This article is cited in 2 papers

Kuga–Satake abelian varieties and $l$-adic representations

S. G. Tankeev

Vladimir Polytechnical Institute

Abstract: Let $J$ be a Kuga–Satake abelian variety defined over a number field $k\hookrightarrow\mathbf C$. Assuming a certain arithmetic condition on the canonical field $K$ associated to $J\otimes_k\mathbf C$, we prove the Mumford–Tate conjecture concerning the Lie algebra of the image of the $l$-adic representation in the one-dimensional cohomology of $J$.

UDC: 513.6

MSC: Primary 11G10, 14K15; Secondary 14G25

Received: 19.06.1990


 English version:
Mathematics of the USSR-Izvestiya, 1992, 39:1, 855–867

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024