RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 209, Pages 25–32 (Mi into1001)

On Ulam–Hyers stability of solutions to first-order differential equations with generalized action

E. Z. Zainullinaa, V. S. Pavlenkoa, A. N. Sesekinab, N. V. Gredasovaa

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: This paper is devoted to sufficient conditions for the Ulam–Hyers stability of solutions of first-order linear differential equations. We introduce the concept of the Ulam–Hyers stability for equations with unbounded right-hand sides whose solutions are functions of bounded variation and obtain sufficient conditions that guarantee this stability.

Keywords: Ulam–Hyers stability, differential equation, discontinuous solution.

UDC: 517.9

MSC: 34A37

DOI: 10.36535/0233-6723-2022-209-25-32



© Steklov Math. Inst. of RAS, 2024