RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 215, Pages 73–80 (Mi into1073)

Beltrami theorem in Minkowski space

A. V. Kostin

Elabuga Branch of Kazan (Volga Region) Federal University

Abstract: E. Beltrami proved a theorem on the relationship of curvatures for families of surfaces of revolution in the three-dimensional Euclidean space, which implies that if some surface of revolution $M'$ orthogonally intersects all surfaces obtained from a surface of constant curvature $M$ by translations along the rotation axis, then the curvature of the surface $M'$ is also constant and differs from the curvature of the surface $M$ only in sign. In this paper, we obtain analogs of this theorem for surfaces of revolution in the three-dimensional Minkowski space.

Keywords: Minkowski space, surface of revolution, Lobachevsky plane, de Sitter plane, space of constant curvature, pseudosphere.

UDC: 514.13; 514.752

MSC: 53A35, 53B30

DOI: 10.36535/0233-6723-2022-215-73-80



© Steklov Math. Inst. of RAS, 2025