RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 215, Pages 81–94 (Mi into1074)

This article is cited in 5 papers

Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field

M. V. Shamolin

Lomonosov Moscow State University

Abstract: This paper is the second part of the work on the integrability of general classes of homogeneous dynamical systems with variable dissipation on the tangent bundles of $n$-dimensional manifolds. The first part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 82–106.

Keywords: dynamical system, nonconservative field, integrability, transcendental first integral.

UDC: 517.9; 531.01

MSC: 34Cxx, 70Cxx

DOI: 10.36535/0233-6723-2022-215-81-94



© Steklov Math. Inst. of RAS, 2025