RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 217, Pages 3–10 (Mi into1091)

On branching of periodic solutions of quasilinear systems of ordinary differential equations

V. V. Abramov, E. Yu. Liskina

Ryazan State University S. A. Esenin

Abstract: In this paper, a normal system of ordinary differential equations with a small parameter is examined. We obtain conditions for the existence and stability of a periodic solution, which, at the zero value of the parameter, satisfies a linear homogeneous system. The reasoning is based on the analysis of properties of the monodromy operator.

Keywords: differential equation, periodic solution, small parameter, monodromy operator.

UDC: 517.925.52

MSC: 34C25

DOI: 10.36535/0233-6723-2022-217-3-10



© Steklov Math. Inst. of RAS, 2025