RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022 Volume 217, Pages 29–36 (Mi into1094)

Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind

I. V. Denisov

Tula State Pedagogical University

Abstract: This paper is a review of applications of the method of angular boundary functions to nonlinear equations. We consider the first boundary-value problem for the following singularly perturbed parabolic equation in a rectangle:
\begin{equation*} \epsilon^2\left(a^2\frac{\partial^2 u}{\partial x^2} -\frac{\partial u}{\partial t}\right)=F(u,x,t,\epsilon), \end{equation*}
where the function $F$ is nonlinear with respect to the variable $u$. We consider the case where the function $F$ is quadratic or cubic in the variable $u$ at the corner points of the rectangle and examine the possibility of constructing a complete asymptotic expansion of the solution of the problem as $\epsilon\rightarrow 0$.

Keywords: boundary layer, asymptotic approximation, singularly perturbed equation.

UDC: 517.956.4

MSC: 34E10

DOI: 10.36535/0233-6723-2022-217-29-36



© Steklov Math. Inst. of RAS, 2025