RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2023 Volume 223, Pages 66–68 (Mi into1155)

Decomposable $n$-continuous mappings

S. M. Komov

Moscow State Pedagogical University

Abstract: In this paper, we introduce the concept of a decomposable $n$-continuous mapping, which is a generalization of the concept of a continuous mapping. We prove that decomposable $n$-continuous mappings preserve such topological invariants as the separability, the Lindelöf property, and the presence of a countable net. We also prove that a decomposable $n$-continuous mapping of a space with a countable base onto a compact Hausdorff space preserves the metrizability.

Keywords: continuity, Lindelöf property, separability, metrizability.

UDC: 515.126.8

MSC: 54C08

DOI: 10.36535/0233-6723-2023-223-66-68



© Steklov Math. Inst. of RAS, 2025