RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2023 Volume 226, Pages 89–107 (Mi into1205)

This article is cited in 1 paper

On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative

V. S. Rykhlov

Saratov State University

Abstract: An initial-boundary problem for an inhomogeneous second-order hyperbolic equation in a half-strip of a plane with constant coefficients and a mixed derivative is studied. This problem describes transverse oscillations of a finite string with fixed ends. We introduce the notion of a classical solution of the initial-boundary problem, prove a uniqueness theorem for the classical solution, and obtain a formula for the solution in the form of a series whose terms are contour integrals containing the initial data of the problem. A definition of a generalized solution is given and finite formulas for this generalized solution are found.

Keywords: oscillation equation, hyperbolic equation, mixed derivative, initial boundary value problem, classical solution, generalized solution.

UDC: 517.958, 517.956.32

MSC: 35L20

DOI: 10.36535/0233-6723-2023-226-89-107



© Steklov Math. Inst. of RAS, 2025