RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2023 Volume 228, Pages 52–57 (Mi into1226)

Recovery of the Laplace–Bessel operator of a function by the spectrum, which is specified not everywhere

S. M. Sitnika, M. V. Polovinkinab, V. E. Fedorovcd, I. P. Polovinkina

a National Research University "Belgorod State University"
b Voronezh State University of Engineering Technologies
c N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
d Chelyabinsk State University

Abstract: In this paper, we present results related to the problem of the best recovery of a fractional power of the $B$-elliptic Laplace–Bessel operator of a smooth function from its Fourier–Bessel transform, which is known exactly or approximately on a certain convex set. The cases of primary estimates in $L_2^\gamma$ and $L_\infty$ are considered.

Keywords: Bessel operator, optimal recovery, extremal problem, Fourier–Bessel transform

UDC: 517.444, 517.9

MSC: 26A33, 35Q92, 35B40, 43A32, 35J15

DOI: 10.36535/0233-6723-2023-228-52-57



© Steklov Math. Inst. of RAS, 2025