RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2023 Volume 229, Pages 90–119 (Mi into1238)

Tensor invariants of geodesic, potential and dissipative systems. III. Systems on tangents bundles of four-dimensional manifolds

M. V. Shamolin

Lomonosov Moscow State University

Abstract: In this paper, we present tensor invariants (first integrals and differential forms) for dynamical systems on the tangent bundles of smooth $n$-dimensional manifolds separately for $n=1$, $n=2$, $n=3$, $n=4$, and for any finite $n$. We demonstrate the connection between the existence of these invariants and the presence of a full set of first integrals that are necessary for integrating geodesic, potential, and dissipative systems. The force fields acting in systems considered make them dissipative (with alternating dissipation).
The first part of the paper: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 227 (2023), pp. 100–128.
The second part of the paper: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 228 (2023), pp. 92–118.

Keywords: dynamical system, integrability, dissipation, transcendental first integral, invariant differential form

UDC: 517.9; 531.01

MSC: 34Cxx, 70Cxx

DOI: 10.36535/0233-6723-2023-229-90-119



© Steklov Math. Inst. of RAS, 2025