RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2023 Volume 230, Pages 8–24 (Mi into1241)

Inequalities for the best “angular” approximation and the smoothness modulus of a function in the Lorentz space

G. A. Akishev

Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan

Abstract: In this paper, we consider the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ of $2\pi$-periodic functions of several variables, the best “angular” approximation of such functions by trigonometric polynomials, and the mixed smoothness modulus of functions from this space. The properties of the mixed smoothness modulus are given and strengthened versions of the direct and inverse theorems on the “angular” approximations are proved.

Keywords: Lorentz space, trigonometric polynomial, best “angular” approximation, smoothness modulus

UDC: 517.51

MSC: 41A10, MSC 41A25, 42A05

DOI: 10.36535/0233-6723-2023-230-8-24



© Steklov Math. Inst. of RAS, 2024