RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2025 Volume 243, Pages 25–37 (Mi into1367)

Periodic traveling waves of the Kuramoto–Sivashinsky equation

A. N. Kulikov, D. A. Kulikov, D. G. Frolov

P.G. Demidov Yaroslavl State University

Abstract: A periodic boundary-value problem for the Kuramoto–Sivashinsky equation is considered. We prove that there exists a two-parameter family of traveling-wave solutions and obtain asymptotic formulas for them. We also prove that the set of such solutions forms a two-dimensional invariant manifold, which is a local attractor. The indicated solutions have different periods in the variable $t$, are unstable in the Lyapunov sense, but are stable in the Perron, Poincaré, and Zhukovsky senses. The study is based on the theory of invariant manifolds and Poincaré–Dulac normal forms.

Keywords: Kuramoto–Sivashinsky equation, two-dimensional invariant manifold, traveling wave, stability, bifurcation, normal form

UDC: 517.929

MSC: 35Lxx

DOI: 10.36535/2782-4438-2025-243-25-37



© Steklov Math. Inst. of RAS, 2025