RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2025 Volume 244, Pages 69–78 (Mi into1380)

Analog of the blow-up solutions to a discrete second-order equation of the Emden–Fowler type

E. V. Korobkoab

a Lomonosov Moscow State University
b Plekhanov Russian State University of Economics, Moscow

Abstract: We consider a discrete analog of the differential equation of the Emden–Fowler type
$$ \Delta^2v(k)=-k^s (\Delta v(k))^3, $$
where $k \to \infty$, $s \ne 1$, $s\in \mathbb{R}$, $\Delta v(k)=v(k+1)-v(k)$. It is a discrete analog of the second-order nonlinear equation $y''(x)=y^s(x)$. We prove the existence of an approximate solution of the form $V(k)=\pm\dfrac{\sqrt{2s+2}}{s-1} k^{(1-s)/2}$ and a nontrivial solution tending to $0$ as $k \to \infty$.

Keywords: discrete equation, Emden–Fowler type equation, power-type solution, vanishing solution

UDC: 517.957, 517.962.8

MSC: 35Qxx, 39A12

DOI: 10.36535/2782-4438-2025-244-69-78



© Steklov Math. Inst. of RAS, 2025