RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2017 Volume 132, Pages 43–49 (Mi into162)

This article is cited in 2 papers

On lower estimates of solutions and their derivatives to a fourth-order linear integrodifferential Volterra equation

S. Iskandarova, G. T. Khalilovab

a Institute of Theoretical and Applied Mathematics of the National Academy of Sciences of the Kyrgyz Republic
b Kyrgyz-Russian Academy of Education

Abstract: We examine solutions of the problem on sufficient conditions that guarantee a lower estimate and tending to infinity of solutions and their derivatives up to the third order to a fourth-order linear integrodifferential Volterra equation. For this purpose, we develop a method based on the nonstandard reduction method (S. Iskandarov), the Volterra transformation method, the method of shearing functions (S. Iskandarov), the method of integral inequalities (Yu. A. Ved’ and Z. Pakhyrov), the method of a priori estimates (N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, P. M. Simonov, 1991, 2001), the Lagrange method for integral representations of solutions to first-order linear inhomogeneous differential equations, and the method of lower estimate of solutions (Yu. A. Ved’ and L. N. Kitaeva).

Keywords: integrodifferential equation, a priori estimate, lower estimate, initial data, instability.

UDC: 517.968.74

MSC: 53А40, 20М15


 English version:
Journal of Mathematical Sciences (New York), 2018, 230:5, 688–694

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024