RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2017 Volume 136, Pages 72–102 (Mi into200)

This article is cited in 1 paper

Lie superalgebras and Calogero–Moser–Sutherland systems

A. N. Sergeevab

a National Research University "Higher School of Economics" (HSE), Moscow
b Saratov State University

Abstract: We review recent results obtained at the intersection of the theory of quantum deformed Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland systems, deformed quantum CMS systems, and representation theory of Lie superalgebras are discussed.

Keywords: quantum Calogero–Moser–Sutherland system, Lax pair, Lie superalgebra, symmetric function, Euler character, Grothendieck ring.

UDC: 512.554.3, 514.84

MSC: 17B10, 17B22, 81U15


 English version:
Journal of Mathematical Sciences (New York), 2018, 235:6, 756–787

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025