RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2017 Volume 139, Pages 104–113 (Mi into228)

This article is cited in 4 papers

On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions

I. A. Shakirov

Naberezhnochelninskii State Pedagogical Institute

Abstract: The Lebesgue constant corresponding to the classical Fourier operator is approximated by a family of logarithmic functions depending on two parameters. We find optimal values of parameters for which the best uniform approximation of the Lebesgue constant by the specific function of this family is achieved. The case where the corresponding remainder is strictly increasing is also considered.

Keywords: partial sums of Fourier series, norm Fourier operator, Lebesgue constant, asymptotic formula, estimation of Lebesgue constant extremum problem.

UDC: 591.65

MSC: 42A20, 57Q55


 English version:
Journal of Mathematical Sciences (New York), 2019, 241:3, 354–363

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024