RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2017 Volume 140, Pages 30–42 (Mi into232)

This article is cited in 3 papers

On one integrable discrete system

E. V. Pavlovaa, I. T. Habibullinbc, A. R. Khakimovac

a Ufa State Petroleum Technological University
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
c Bashkir State University, Ufa

Abstract: In this paper, we study a system of nonlinear equations on a square graph related to the affine algebra $A^{(1)}_1$. This system is the simplest representative of the class of discrete systems corresponding to affine Lie algebras. We find the Lax representation and construct hierarchies of higher symmetries. In neighborhoods of singular points $\lambda=0$ and $\lambda=\infty$, we construct formal asymptotic expansions of eigenfunctions of the Lax pair and, based on these expansions, find series of local conservation laws for the system considered.

Keywords: Lax pair, higher symmetry, conservation law, recursion operator, formal diagonalization.

UDC: 517.9

MSC: 35Q51, 37K60


 English version:
Journal of Mathematical Sciences (New York), 2019, 241:4, 409–422

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025