RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2017 Volume 141, Pages 48–60 (Mi into242)

On the localization conditions for the spectrum of a non-self-adjoint Sturm–Liouville operator with slowly growing potential

L. G. Valiullina, Kh. K. Ishkin

Bashkir State University, Ufa

Abstract: We consider the Sturm–Liouville operator $T_0$ on the semi-axis $(0,+\infty)$ with the potential $e^{i\theta}q$, where $0<\theta<\pi$ and $q$ is a real-valued function that can have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: $T_0$ is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class $\mathfrak{S}_p$ for any $p<\infty$. We find conditions for $q$ and perturbations of $V$ under which the localization or the asymptotics of its spectrum is preserved.

Keywords: non-self-adjoint differential operator, Keldysh theorem, spectral stability, localization of spectrum.

UDC: 517.927.25

MSC: 34B24, 47E05


 English version:
Journal of Mathematical Sciences (New York), 2019, 241:5, 556–569

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024