RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 144, Pages 3–16 (Mi into267)

This article is cited in 2 papers

Equivalence of Paths in Galilean Geometry

V. I. Chilin, K. K. Muminov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Abstract: An explicit description of finite transcendence bases in differential fields of differential rational functions that are invariant under the action of Galilean transformation group in a real finite-dimensional space is presented. Necessary and sufficient conditions of the equivalence of paths in the $n$-dimensional Galilean space are obtained.

Keywords: Galilean space, differential invariant, transcendence basis, path in a finite-dimensional space.

UDC: 512.74

MSC: 53A15, 53A55, 53B30


 English version:
Journal of Mathematical Sciences (New York), 2020, 245:3, 297–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025