RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 144, Pages 88–95 (Mi into276)

On Projectively Inductively Closed Subfunctors of the Functor $P$ of Probability Measures

Sh. A. Ayupova, T. F. Zhuraevb

a V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
b Nizami Tashkent State Pedagogical University

Abstract: In the paper, we examine topological and dimensional properties of metric, Tychonoff, compact $C$-spaces under the action of the covariant subfunctor $P_{f}$ of the functor $P$ of probability measures in the category of metric, compact, paracompact spaces and continuous mappings into itself. We consider geometric properties of spaces under the action of the subfunctor $P_{f}$ of the functor $P$ of probability measures and show that this functor $P_{f}$ is an open $\sigma$-p.i.c. functor that preserves soft mappings and various types of topological spaces.

Keywords: functor, probability measure, Dirac measure, soft mapping, $C$-space, inductively closed functor, sigma inductively closed functors, Dugundji compactum.

UDC: 515.12

MSC: Primary 54B15; Secondary 54B30, 54B35, 54C05, 54C15, 54C60, 54030


 English version:
Journal of Mathematical Sciences (New York), 2020, 245:3, 382–389

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025