RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 149, Pages 56–63 (Mi into318)

This article is cited in 2 papers

Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции

A. I. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We examine the solvability of the boundary-value problems for the differential equation
\begin{gather*} h(t)u_t+(-1)^mD^{2m+1}_au-\Delta u+c(x,t,a)u=f(x,t,a); \\ x\in\Omega\subset \mathbb{R}^n, \quad 0<t<T, \quad 0<a<A, \quad D^k_a=\frac{\partial^k}{\partial a^k}, \end{gather*}
where the sign of the function $h(t)$ arbitrarily alternates in the interval $[0,T]$. The existence and uniqueness theorems of regular (i.e., possessing all generalized derivatives in the Sobolev sense) solutions are proved.

Keywords: ultraparabolic equation, nonclassical differential equation of odd order, evolution, boundary-value problem, regular solution, existence, uniqueness.

UDC: 517.946

MSC: 35M99, 35K70


 English version:
Journal of Mathematical Sciences (New York), 2020, 250:5, 772–779

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024