RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 149, Pages 129–140 (Mi into326)

This article is cited in 17 papers

Inverse Boundary-Value Problem for an Integro-Differential Boussinesq-type Equation with Degenerate Kernel

T. K. Yuldashev

M. F. Reshetnev Siberian State University of Science and Technologies

Abstract: We discuss questions on the unique solvability of inverse boundary-value source problems for a certain nonlinear integro-differential equation of Boussinesq type with degenerate kernel. We develop the method of degenerate kernels for the inverse boundary-value problem for a fourth-order integro-differential partial differential equation. Using the Banach fixed-point theorem, we prove the uniquely solvability of the problem and establish a criterion of stability of solutions with respect to recovery functions.

Keywords: inverse boundary-value problem, integro-differential Boussinesq-type equation, degenerate kernel, unique solvability.

UDC: 517.968

MSC: 35R30


 English version:
Journal of Mathematical Sciences (New York), 2020, 250:5, 847–858

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025