RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 152, Pages 34–45 (Mi into349)

Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian

V. F. Vil'danovaa, F. Kh. Mukminovb

a Bashkir State Pedagogical University, Ufa
b Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa

Abstract: We consider an aggregation elliptic-parabolic equation of the form
\begin{equation*} b(u)_t=\operatorname{div}\Big( |\nabla u|^{p(x)-2}\nabla u-b(u)G(u)\Big)+\gamma(x,b(u)), \end{equation*}
where $b$ is a nondecreasing function and $G(u)$ is an integral operator. The condition on the boundary of a bounded domain $\Omega$ ensures that the mass of the population $\int u(x,t)dx=\operatorname{const}$ is preserved for $\gamma=0$. The existence of a weak solution of the problem with a nonnegative bounded initial function in the cylinder $\Omega\times(0,T)$ is proved. A formula for the guaranteed time $T$ for the existence of the solution is obtained.

Keywords: aggregation equation, $p(\cdot)$-Laplacian, existence of solution.

UDC: 517.956.45, 517.968.74

MSC: 35K20, 35K55, 35K65


 English version:
Journal of Mathematical Sciences (New York), 2021, 252:2, 156–167

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025