RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 152, Pages 91–102 (Mi into353)

This article is cited in 2 papers

Generalized Jacobian Matrices and Spectral Analysis of Differential Operators with Polynomial Coefficients

K. A. Mirzoeva, N. N. Konechnajab, T. A. Safonovab, R. N. Tagirovab

a Lomonosov Moscow State University
b Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk

Abstract: This paper is devoted to the matrix representation of ordinary symmetric differential operators with polynomial coefficients on the whole axis. We prove that in this case, generalized Jacobian matrices appear. We examine the problem of defect indexes for ordinary differential operators and generalized Jacobian matrices corresponding to them in the spaces $\mathcal{L}^2(-\infty,+\infty)$ and $l^2$, respectively, and analyze the spectra of self-adjoint extensions of these operators (if they exist). This method allows one to detect new classes of entire differential operators of minimal type (in the sense of M. G. Krein) with certain defect numbers. In this case, the defect numbers of these operators can be not only less or equal, but also greater than the order of the corresponding differential expressions. In particular, we construct examples of entire differential operators of minimal type that are generated by irregular differential expressions.

Keywords: regular and irregular differential expression, differential operator, generalized Jacobian matrices, defect index, integer operators of minimal type.

UDC: 517.984, 517.929

MSC: 47E05, 39A10


 English version:
Journal of Mathematical Sciences (New York), 2021, 252:2, 213–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024