RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2018 Volume 153, Pages 128–134 (Mi into368)

Meromorphic Functions with Slow Growth of Nevanlinna Characteristics and Rapid Growth of Spherical Derivative

Sh. A. Makhmutov, M. S. Makhmutova

Sultan Qaboos University

Abstract: Meromorphic functions with a given growth of a spherical derivative on the complex plane are described in terms of the relative location of $a$-points of functions. The result obtained allows one to construct an example of a meromorphic function in $\mathbb{C}$ with a slow growth of Nevanlinna characteristics and arbitrary growth of the spherical derivative. In addition, based on the universality property of the Riemann zeta-function, we estimate the growth of the spherical derivative of $\zeta(z)$.

Keywords: meromorphic function, spherical derivative, Nevanlinna characteristics, Riemann zeta-function.

UDC: 517.547.28, 517.547.24

MSC: 30D30, 30D35


 English version:
Journal of Mathematical Sciences (New York), 2021, 252:3, 420–427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024