RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019 Volume 159, Pages 111–132 (Mi into417)

This article is cited in 1 paper

E-groups and E-rings

P. A. Krylova, A. A. Tuganbaevbc, A. V. Tsarevd

a National Research Tomsk State University
b National Research University "Moscow Power Engineering Institute"
c Lomonosov Moscow State University
d Moscow State Pedagogical University

Abstract: An associative ring $R$ is called an $E$-ring if the canonical homomorphism $R\cong \textsf{E}(R^+)$ is an isomorphism. Additive groups of $E$-rings are called $E$-groups. In other words, an Abelian group $A$ is an $E$-group if and only if $A\cong \operatorname{End} A$ and the endomorphism ring $\textsf{E}(A)$ is commutative. In this paper, we give a survey of the main results on $E$-groups and $E$-rings and also consider some of their generalizations: $\mathcal{E}$-closed groups, $T$-rings, $A$-rings, the groups admitting only commutative multiplications, etc.

Keywords: Abelian group, $\mathcal{E}$-closed group, $E$-group, $E$-ring, $T$-ring, quotient divisible group, $A$-ring, endomorphism ring.

UDC: 512.541

MSC: 20Kxx


 English version:
Journal of Mathematical Sciences (New York), 2021, 256:4, 341–361

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024