RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019 Volume 160, Pages 28–31 (Mi into421)

On a class of planar geometrical curves with constant reaction forces acting to particles moving along them

S. O. Gladkov, S. B. Bogdanova

Moscow Aviation Institute (National Research University)

Abstract: In this paper, we find the dependence of the reaction force $N(y)$ of a curved trough of arbitrary shape described by a function $y(x)$. Based on the extremum condition ${dN}/{dx}$ valid for any point of the abscissa axis, we examine the equation $N(y,y',y'')=\operatorname{const}$ whose solutions determine the desired class of curves $y(x)$. We obtain an analytic solution of this equations and perform numerical simulations for various values of parameters. Examples of functions $y(x)$ for which $N=\operatorname{const}$ are presented.

Keywords: reaction force, curved trough, nonlinear differential equation, numerical solution.

UDC: 517.97

MSC: 49S05



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024