RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019 Volume 168, Pages 80–90 (Mi into503)

Second-kind equilibrium states of the Kuramoto–Sivashinsky equation with homogeneous Neumann boundary conditions

A. V. Sekatskaya

P.G. Demidov Yaroslavl State University

Abstract: In this paper, we consider the boundary-value problem for the Kuramoto–Sivashinsky equation with homogeneous Neumann conditions. The problem on the existence and stability of second-kind equilibrium states was studied in two ways: by the Galerkin method and by methods of the modern theory of infinite-dimensional dynamical systems. Some differences in results obtained are indicated.

Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, equilibrium, stability, Galerkin method, computer analysis.

UDC: 517.956.4

MSC: 37L10, 37L25, 37L65

DOI: 10.36535/0233-6723-2019-168-80-90



© Steklov Math. Inst. of RAS, 2025