RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019 Volume 169, Pages 98–115 (Mi into519)

Geometry of $m$-Hessian equations

N. V. Filimonenkova

Peter the Great St. Petersburg Polytechnic University

Abstract: In the process of developing the modern theory of fully nonlinear, second-order partial differential equations, new geometric characteristics of surfaces naturally appeared. The implementation of these characteristics in terms of the classical differential geometry leads to significant technical difficulties. This paper provides a review of the necessary methodological reform and demonstrates a new differential geometric techniques by an example of constructing boundary barriers for $m$-Hessian equations.

Keywords: curvature matrix, $p$-curvature, $m$-convex hypersurface, $m$-Hessian equations, kernel of the boundary barrier.

UDC: 514.763.85

MSC: 53A55, 35J60

DOI: 10.36535/0233-6723-2019-169-98-115



© Steklov Math. Inst. of RAS, 2024