RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019 Volume 172, Pages 9–29 (Mi into543)

Multiparameter eigenvalue problems and their applications in electrodynamics

D. V. Valovik, V. Yu. Kurseeva

Penza State University

Abstract: A nonlinear $n$-parametric eigenvalue problem called the problem $P$ is considered. In addition to $n$ spectral parameters, the problem $P$ depends on $n^2$ numerical parameters; for zero values of them, it splits into $n$ linear problems $P_i^0$, $i=\overline{1,n}$. To the problem $P$, one can assign $n$ other nonlinear problems $P_i$, which, in particular, have solutions that are not related to the solutions of the problems $P_i^0$. The problems $P_i$ are treated in this work as “nonperturbed” problems. Using the properties of eigenvalues of the problems $P_i$, we prove the existence of eigenvalues of the problem $P$; some of these eigenvalues are not related to solutions of the problems $P_i^0$.

Keywords: nonlinear Sturm–Liouville-type problem, multiparameter eigenvalue problem, perturbation method, method of integral dispersion equations.

UDC: 517.927.4, 517.988.57

MSC: 47H14, 35P30, 35Q61

DOI: 10.36535/0233-6723-2019-172-9-29



© Steklov Math. Inst. of RAS, 2025