RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 174, Pages 52–69 (Mi into568)

Odd-order integrable dynamical systems with dissipation

M. V. Shamolin

Lomonosov Moscow State University

Abstract: In this paper, we prove the integrability of some classes of odd-order dynamical systems (namely, systems of order 3, 5, and 7), which are homogeneous in some variables and contain a system on the tangent bundle of a smooth manifolds. In this case, we separate force fields into internal (conservative) and external, which has sign-alternating dissipation. External fields are introduced by using some unimodular transformations and generalize fields considered earlier.

Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral.

UDC: 517.933

MSC: 70G60

DOI: 10.36535/0233-6723-2020-174-52-69



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025