RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 176, Pages 26–33 (Mi into584)

Multipole expansion of the fundamental solution of a fractional degree of the Laplace operator

N. S. Belevtsov, S. Yu. Lukashchuk

Ufa State Aviation Technical University

Abstract: A multipole expansion of the fundamental solution of the fractional degree of the Laplace operator is constructed in terms of the Gegenbauer polynomials. Based on the decomposition constructed and the idea of the fast multipole method, we propose a numerical algorithm for solving the fractional differential generalization of the Poisson equation in the two-dimensional and three-dimensional spaces.

Keywords: fractional Laplacian, fundamental solution, multipole expansion, fast multipole method, numerical algorithm.

UDC: 517.968.72

MSC: 35R11, 35J08

DOI: 10.36535/0233-6723-2020-176-26-33



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024