RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 177, Pages 24–33 (Mi into595)

On the number of Heisenberg characters of finite groups

A. Zolfi, A. R. Ashrafi

University of Kashan

Abstract: An irreducible character $\chi$ of a finite group $G$ is called a Heisenberg character if $\ker \chi \supseteq [G, [G, G]]$. In this paper, we prove that the group $G$ has exactly $r$, $r \leq 3$, Heisenberg characters if and only if $|{G}/{G'}|=r$. If $G$ has exactly four Heisenberg characters, then $|{G}/{G'}|=4$, but the converse is not correct in general. Finally, it is proved that if $G$ has exactly five Heisenberg characters, then $|{G}/{G'}|=5$ or $|{G}/{G'}|=4$ and one of the Heisenberg characters of $G$ has the degree $2$.

Keywords: irreducible character, Heisenberg character, finite group.

UDC: 512.54

MSC: 20C20, 20E34

DOI: 10.36535/0233-6723-2020-177-24-33



© Steklov Math. Inst. of RAS, 2024