RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 177, Pages 87–96 (Mi into602)

$A(\infty)$-algebra structure in the cohomology and cohomologies of a free loop space

T. V. Kadeishviliab

a A. Razmadze Mathematical Institute, Georgian Academy of Sciences
b Tbilisi Ivane Javakhishvili State University

Abstract: The cohomology algebra of the space $H^*(X)$ defines neither cohomology modules of the loop space $H^*(\Omega X)$ nor cohomologies of the free loop space $H^*(\Lambda X)$. But by the author's minimality theorem, there exists a structure of $A(\infty)$-algebra $(H^*(X),\{m_i\})$ on $H^*(X)$, which determines $H^*(\Omega X)$. We also show that the same $A(\infty)$-algebra $(H^*(X),\{m_i\})$ determines also cohomology modules $H^*(\Lambda X)$.

Keywords: Hochschild homology, morphism, $A(\infty)$-algebra, cohomology algebra, cohomology module, loop space.

UDC: 512.665.43, 515.145.5

MSC: 19D55, 55P35

DOI: 10.36535/0233-6723-2020-177-87-96



© Steklov Math. Inst. of RAS, 2025