RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 179, Pages 34–36 (Mi into623)

On $q$-ary periodic sequences

A. H. Munos Vaskes

Moscow State Pedagogical University

Abstract: We consider the problem of estimating the possible number of periods and the length of the periodic part of an irrational number depending on its measure of irrationality $\beta$. We state that the expansion of the fractional part of an irrational number $\alpha$ cannot start from the nonperiodic part of length $(1-\delta)N$ and end with the periodic part of the length $\delta N$, regardless of the numeral system.

Keywords: measure of irrationality, $q$-ary decomposition.

UDC: 511.36

MSC: 11J82

DOI: 10.36535/0233-6723-2020-179-34-36



© Steklov Math. Inst. of RAS, 2025