RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 180, Pages 85–90 (Mi into645)

Higher-order normals on manifolds

K. V. Polyakova

Immanuel Kant Baltic Federal University, Kaliningrad

Abstract: On an $n$-dimensional smooth manifold, we consider higher-order normals of two types, i.e., the spaces that complement the tangent space of orders $1$ or ${r-1}$ to the tangent space of order $r$. We prove that the derivatives of some basic vectors in the direction of the given first-order (second-order) basis vectors are equal to the values on these vectors of the first-order (second-order) differentials of the first vectors. Using the differentials of basic tangent vectors of the first and second orders, we construct mappings from the set of first-order tangent vectors to the set of second- and third-orders normal vectors. Also, we introduce mappings that generate horizontal second- and third-order vectors for the canonical first- and second- order affine connections, respectively.

Keywords: differential form, tangent space, normal on a manifold, affine connection.

UDC: 514.76

MSC: 53B05, 58A10

DOI: 10.36535/0233-6723-2020-180-85-90



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025