RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 181, Pages 74–83 (Mi into660)

This article is cited in 3 papers

On the diffeomorphism groups of foliated manifolds

A. Ya. Narmanov, A. S. Sharipov

National University of Uzbekistan named after Mirzo Ulugbek

Abstract: In this paper, we introduce a certain topology on the group $\mathrm{Diff}_F(M)$ of all $C^r$-diffeomorphisms of the foliated manifold $(M;F)$, where $r\ge0$. This topology depends on the foliation and is called the $F$-compact-open topology. It coincides with the compact-open topology when $F$ is an $n$-dimensional foliation. If the codimension of the foliation is $n$, then the convergence in this topology coincides with the pointwise convergence, where $n=\dim M$. We prove that some subgroups of the group $\mathrm{Diff}_F(M)$ are topological groups with the $F$-compact-open topology. Throughout this paper, we use smoothness of the class $C^{\infty}$.

Keywords: manifold, foliation, topological group, compact-open topology.

UDC: 514.763.23

MSC: 22A05, 54H15, 57R50, 53C12

DOI: 10.36535/0233-6723-2020-181-74-83



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025