RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 183, Pages 113–119 (Mi into691)

Minimal branches of solutions of nonlinear operator equations in Banach spaces

R. Yu. Leontiev

Irkutsk State University

Abstract: We consider the nonlinear equation $B(\lambda)x=R(x,\lambda)+b(\lambda)$, where $R(0,0)=0$, $b(0)=0$, the linear operator $B(\lambda)$ has a bounded inverse operator for $S\ni\lambda\rightarrow0$, and $S$ is an open set, $0\in\partial S$. We examine the problem on the existence of a small continuous solution of the maximal order od smallness $x(\lambda)\rightarrow0$ as $S\ni\lambda\rightarrow0$. A constructive method way of constructing this solution is presented.

Keywords: nonlinear operator, Banach space, operator equation, minimal branch.

UDC: 517.988

MSC: 47J99

DOI: 10.36535/0233-6723-2020-183-113-119



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024