RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2020 Volume 185, Pages 13–18 (Mi into697)

On periodic solutions of a second-order ordinary differential equation

V. V. Abramov, E. Yu. Liskina

Ryazan State University S. A. Esenin

Abstract: We consider a differential equation containing first- and second-order forms with respect to the phase variable and its derivative with constant coefficients and a periodic inhomogeneity. Using the method of constructing a positively invariant rectangular domain, we examine the existence of a asymptotically stable (in the Lyapunov sense) periodic solution. Criteria for the existence of a periodic solution are formulated in terms of properties of isoclines. We consider cases where the zero isocline is a nondegenerate second-order curve.

Keywords: second-order differential equation, qualitative theory, periodic solution, stability, nonlinear oscillator.

UDC: 517.925.42

MSC: 34С05, 34С25, 34D20

DOI: 10.36535/0233-6723-2020-185-13-18



© Steklov Math. Inst. of RAS, 2025